organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N'-[4-(Dimethylamino)benzylidene]-3,5dihydroxybenzohydrazide monohydrate

Yun-Peng Diao,^{a,b} Jian-Kui Zhang,^b Shi-Quan Xie^b and Ting-Guo Kang^b*

^aSchool of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China, and ^bLiaoning University of Traditional Chinese Medicine, Shenyang 110032, People's Republic of China Correspondence e-mail: diaoyiwen@126.com

Received 20 November 2007; accepted 20 November 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.010 Å; R factor = 0.068; wR factor = 0.172; data-to-parameter ratio = 7.2.

In the title compound, $C_{16}H_{17}N_3O_3 H_2O$, the dihedral angle between the two benzene rings is 7.4 (6)°. The Schiff base unit is nearly planar, with a mean deviation from the plane of 0.089 (8) Å. In the crystal structure, molecules are linked through intermolecular $O-H \cdots O$, $O-H \cdots N$ and $N-H \cdots O$ hydrogen bonds, forming layers parallel to the *ab* plane.

Related literature

For related structures, see: Brückner *et al.* (2000); Diao (2007); Diao *et al.* (2007); Harrop *et al.* (2003); Huang, Zhou *et al.* (2007); Li, Huang *et al.* (2007); Ren *et al.* (2002).

Experimental

Crystal data

 $\begin{array}{l} C_{16}H_{17}N_{3}O_{3}\cdot H_{2}O\\ M_{r}=317.34\\ Monoclinic, Ia\\ a=12.984 (3) Å\\ b=4.6620 (9) Å\\ c=26.040 (5) Å\\ \beta=101.97 (3)^{\circ} \end{array}$

 $V = 1542.0 \text{ (6) } \text{\AA}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 298 (2) K $0.27 \times 0.23 \times 0.23 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2000) $T_{\rm min} = 0.974, T_{\rm max} = 0.977$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.068$	H atoms treated by a mixture of
$wR(F^2) = 0.172$	independent and constrained
S = 1.01	refinement
1595 reflections	$\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$
221 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$
6 restraints	

4115 measured reflections

 $R_{\rm int} = 0.075$

1595 independent reflections

878 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O4-H4A\cdots O3^{i}$	0.850 (11)	2.16 (6)	2.895 (8)	144 (9)
$N1 - H1A \cdots O4^{ii}$	0.902 (11)	2.14 (3)	2.999 (7)	159 (8)
$O4-H4B\cdots N2$	0.848 (11)	2.46 (4)	3.175 (7)	143 (6)
$O4-H4B\cdots O3$	0.848 (11)	2.24 (5)	2.936 (8)	139 (7)
O2−H2···O3 ⁱⁱⁱ	0.82	1.99	2.694 (6)	144
$O1\!-\!H1\!\cdots\!O2^{iv}$	0.82	2.06	2.766 (7)	145
Symmetry codes: $x + \frac{1}{2}, -y - 2, z.$	(i) $x, y + 1, z;$	(ii) $x - \frac{1}{2}, -y, z;$	(iii) $x - \frac{1}{2}, -$	-y - 1, z; (iv)

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This project is supported by a research grant from Dalian Medical University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GD2022).

References

- Brückner, C., Rettig, S. J. & Dolphin, D. (2000). *Inorg. Chem.* **39**, 6100–6106. Bruker (2000). *SMART* (Version 5.625), *SAINT* (Version 6.01). *SHELXTL*
- (Version 6.10) and *SADABS* (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
- Diao, Y.-P. (2007). Acta Cryst. E63, m1453-m1454.
- Diao, Y.-P., Shu, X.-H., Zhang, B.-J., Zhen, Y.-H. & Kang, T.-G. (2007). Acta Cryst. E63, m1816.
- Harrop, T. C., Olmstead, M. M. & Mascharak, P. K. (2003). Chem. Commun. pp. 410–411.
- Huang, S.-S., Zhou, Q. & Diao, Y.-P. (2007). Acta Cryst. E63, 04659.
- Li, K., Huang, S.-S., Zhang, B.-J., Meng, D.-L. & Diao, Y.-P. (2007). Acta Cryst. E63, m2291.
- Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). *J. Med. Chem.* 45, 410– 419.

supplementary materials

Acta Cryst. (2007). E63, o4908 [doi:10.1107/S1600536807061132]

N'-[4-(Dimethylamino)benzylidene]-3,5-dihydroxybenzohydrazide monohydrate

Y.-P. Diao, J.-K. Zhang, S.-Q. Xie and T.-G. Kang

Comment

Schiff base compounds have received much attention in recent years. Some of the complexes have been found to have pharmacological and antitumor properties (Brückner *et al.*, 2000; Harrop *et al.*, 2003; Ren *et al.*, 2002). As part of our research programme on the Schiff base compounds (Diao *et al.*, 2007; Diao, 2007; Li, Huang *et al.*, 2007; Huang *et al.*, 2007), we report here the structure of the title compound.

The title compound consists of a Schiff base molecule and a lattice water molecule (Fig. 1). The dihedral angle between the two benzene rings is 7.4 (6) $^{\circ}$. The Schiff base unit is nearly planar, with mean deviation from plane by 0.089 (8) Å.

In the crystal, molecules are linked through intermolecular hydrogen bonds of O–H…O, O–H…N and N–H…O type (Table 1), forming layers parallel to the *ab* plane (Fig. 2).

Experimental

4-Dimethylaminobenzaldehyde (1.0 mmol, 149.2 mg) and 3,5-dihydroxybenzoic acid hydrazide (1.0 mmol, 168.2 mg) were dissolved in a methanol solution (70 ml). The mixture was stirred at reflux for 1 h and cooled to room temperature. After keeping the solution in air for five days, yellow block-like crystals were formed.

Refinement

H1A, H4A and H4B were located from a difference Fourier map and refined isotropically, with N—H distances restrained to 0.90 (1) Å, for the water component the O—H distances were restrained to 0.85 (1) Å, and the H…H distance was restrained to 1.37 (2) Å. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with distances C—H 0.93–0.96 Å, and O—H 0.82 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5U_{eq}(O)$ and methyl C).

Figures

Fig. 1. The molecular structure of the title compound; displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. O–H···O, O—H···N and N–H···O hydrogen bonding in the title compound, forming layers parallel to the ab plane.

N'-[4-(Dimethylamino)benzylidene]-3,5-dihydroxybenzohydrazide monohydrate

Crystal data	
$C_{16}H_{17}N_3O_3\cdot H_2O$	$F_{000} = 672$
$M_r = 317.34$	$D_{\rm x} = 1.367 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, Ia	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: I -2ya	Cell parameters from 419 reflections
a = 12.984 (3) Å	$\theta = 2.6 - 24.3^{\circ}$
b = 4.6620 (9) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 26.040 (5) Å	T = 298 (2) K
$\beta = 101.97 \ (3)^{\circ}$	Block, yellow
V = 1542.0 (6) Å ³	$0.27 \times 0.23 \times 0.23 \text{ mm}$
Z = 4	

Data collection

Bruker SMART CCD area-detector diffractometer	1595 independent reflections
Radiation source: fine-focus sealed tube	878 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.075$
T = 298(2) K	$\theta_{\text{max}} = 26.5^{\circ}$
ω scans	$\theta_{\min} = 3.2^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2000)	$h = -16 \rightarrow 16$
$T_{\min} = 0.974, T_{\max} = 0.977$	$k = -5 \rightarrow 4$
4115 measured reflections	$l = -32 \rightarrow 26$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.068$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0714P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.172$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.02	$\Delta \rho_{max} = 0.30 \text{ e } \text{\AA}^{-3}$
1595 reflections	$\Delta \rho_{min} = -0.23 \text{ e} \text{ Å}^{-3}$
221 parameters	Extinction correction: none
6 restraints	
Primary atom site location: structure-invariant direct methods	

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.6358 (4)	-0.0223 (13)	0.40242 (18)	0.0561 (14)
H1	0.6921	-0.0062	0.3930	0.084*
O2	0.2765 (3)	0.1330 (12)	0.33837 (19)	0.0564 (14)
H2	0.2368	0.2521	0.3216	0.085*
O3	0.6269 (3)	0.6887 (11)	0.25687 (17)	0.0460 (13)
O4	0.7220 (4)	0.1943 (13)	0.2180 (2)	0.0603 (15)
N1	0.4566 (4)	0.8107 (13)	0.22950 (19)	0.0410 (14)
N2	0.4820 (4)	1.0035 (14)	0.1938 (2)	0.0435 (14)
N3	0.4263 (5)	1.8785 (16)	-0.0003 (3)	0.069 (2)
C1	0.5024 (5)	0.4512 (15)	0.2978 (2)	0.0368 (16)
C2	0.3987 (5)	0.3982 (16)	0.2991 (2)	0.0420 (17)
H2A	0.3443	0.4912	0.2762	0.050*
C3	0.3774 (5)	0.1980 (16)	0.3363 (2)	0.0406 (16)
C4	0.4562 (5)	0.0604 (17)	0.3692 (2)	0.0399 (17)
H4	0.4407	-0.0742	0.3928	0.048*
C5	0.5586 (5)	0.1193 (16)	0.3677 (2)	0.0407 (17)
C6	0.5831 (5)	0.3110 (15)	0.3310 (2)	0.0384 (16)
Н6	0.6527	0.3437	0.3289	0.046*
C7	0.5327 (5)	0.6580 (15)	0.2596 (2)	0.0363 (16)
C8	0.4024 (5)	1.1293 (16)	0.1662 (2)	0.0426 (17)
H8	0.3358	1.0916	0.1726	0.051*
С9	0.4132 (5)	1.3300 (17)	0.1251 (3)	0.0460 (18)
C10	0.5076 (5)	1.3966 (18)	0.1117 (3)	0.053 (2)
H10	0.5695	1.3154	0.1305	0.064*
C11	0.5117 (6)	1.5815 (18)	0.0710 (3)	0.055 (2)
H11	0.5764	1.6234	0.0627	0.066*
C12	0.4218 (6)	1.7053 (17)	0.0422 (3)	0.0536 (19)
C13	0.3264 (6)	1.6500 (18)	0.0565 (3)	0.062 (2)
H13	0.2650	1.7369	0.0384	0.074*
C14	0.3232 (6)	1.4649 (19)	0.0976 (3)	0.059 (2)
H14	0.2591	1.4299	0.1071	0.071*
C15	0.3331 (7)	2.014 (2)	-0.0305 (3)	0.080 (3)
H15A	0.2807	1.8704	-0.0428	0.120*

supplementary materials

H15B	0.3505	2.1120	-0.0599	0.120*
H15C	0.3061	2.1488	-0.0088	0.120*
C16	0.5271 (7)	1.963 (2)	-0.0118 (3)	0.075 (3)
H16A	0.5664	2.0699	0.0172	0.113*
H16B	0.5154	2.0790	-0.0429	0.113*
H16C	0.5659	1.7941	-0.0173	0.113*
H4B	0.674 (4)	0.067 (10)	0.214 (3)	0.080*
H1A	0.390 (3)	0.78 (2)	0.234 (4)	0.080*
H4A	0.693 (5)	0.359 (6)	0.215 (4)	0.080*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.043 (3)	0.089 (4)	0.038 (3)	0.014 (3)	0.012 (2)	0.020 (3)
O2	0.040 (3)	0.081 (4)	0.050 (3)	-0.004 (3)	0.011 (2)	0.018 (2)
O3	0.036 (2)	0.060 (4)	0.042 (3)	-0.001 (2)	0.0090 (19)	0.006 (2)
O4	0.039 (2)	0.074 (4)	0.069 (3)	-0.007 (3)	0.014 (2)	-0.007 (3)
N1	0.034 (3)	0.059 (4)	0.031 (3)	0.006 (3)	0.011 (2)	0.008 (3)
N2	0.046 (3)	0.048 (4)	0.038 (3)	-0.001 (3)	0.012 (3)	0.003 (3)
N3	0.074 (5)	0.079 (5)	0.053 (4)	0.008 (4)	0.012 (3)	0.021 (4)
C1	0.036 (4)	0.045 (4)	0.033 (3)	0.002 (3)	0.013 (3)	0.000 (3)
C2	0.036 (4)	0.055 (5)	0.034 (4)	0.007 (3)	0.004 (3)	0.002 (3)
C3	0.032 (3)	0.053 (5)	0.039 (4)	-0.006 (3)	0.011 (3)	0.001 (3)
C4	0.041 (4)	0.048 (5)	0.035 (3)	-0.001 (3)	0.017 (3)	0.000(3)
C5	0.042 (4)	0.050 (5)	0.029 (3)	0.011 (3)	0.005 (3)	0.001 (3)
C6	0.041 (4)	0.043 (4)	0.033 (3)	0.000 (3)	0.010 (3)	-0.002 (3)
C7	0.037 (4)	0.038 (4)	0.037 (4)	-0.003 (3)	0.016 (3)	-0.007 (3)
C8	0.041 (4)	0.051 (5)	0.036 (4)	0.002 (3)	0.008 (3)	0.004 (3)
C9	0.036 (4)	0.061 (5)	0.041 (4)	-0.004 (4)	0.009 (3)	0.003 (3)
C10	0.044 (4)	0.076 (6)	0.039 (4)	0.000 (4)	0.006 (3)	0.015 (4)
C11	0.051 (4)	0.077 (6)	0.038 (4)	-0.009 (4)	0.013 (3)	0.013 (4)
C12	0.058 (5)	0.071 (6)	0.032 (4)	0.003 (4)	0.009 (3)	0.005 (4)
C13	0.056 (5)	0.071 (6)	0.055 (5)	0.006 (4)	0.004 (4)	0.026 (4)
C14	0.045 (4)	0.072 (6)	0.060 (5)	0.000 (4)	0.008 (3)	0.018 (4)
C15	0.085 (6)	0.087 (8)	0.066 (6)	0.005 (5)	0.008 (5)	0.028 (5)
C16	0.079 (6)	0.091 (8)	0.059 (5)	-0.006 (5)	0.022 (5)	0.016 (5)

Geometric parameters (Å, °)

O1—C5	1.372 (8)	C4—H4	0.9300
O1—H1	0.8200	C5—C6	1.393 (9)
O2—C3	1.357 (8)	С6—Н6	0.9300
O2—H2	0.8200	C8—C9	1.450 (10)
O3—C7	1.248 (8)	С8—Н8	0.9300
O4—H4B	0.85 (4)	C9—C10	1.377 (9)
O4—H4A	0.85 (4)	C9—C14	1.388 (10)
N1—C7	1.333 (8)	C10-C11	1.377 (9)
N1—N2	1.382 (8)	C10—H10	0.9300
N1—H1A	0.91 (5)	C11—C12	1.376 (10)

N2—C8	1.273 (9)	C11—H11	0.9300
N3—C12	1.381 (9)	C12—C13	1.389 (10)
N3—C15	1.443 (10)	C13—C14	1.384 (11)
N3—C16	1.455 (10)	С13—Н13	0.9300
C1—C2	1.377 (8)	C14—H14	0.9300
C1—C6	1.377 (8)	C15—H15A	0.9600
C1—C7	1.495 (9)	C15—H15B	0.9600
C2—C3	1.412 (9)	C15—H15C	0.9600
C2—H2A	0.9300	C16—H16A	0.9600
C3—C4	1.353 (9)	C16—H16B	0.9600
C4—C5	1.366 (9)	C16—H16C	0.9600
С5—О1—Н1	109.5	N2—C8—H8	119.3
C3—O2—H2	109.5	С9—С8—Н8	119.3
H4B—O4—H4A	109 (3)	C10-C9-C14	117.7 (7)
C7—N1—N2	119.5 (5)	C10—C9—C8	124.1 (6)
C7—N1—H1A	118 (6)	C14—C9—C8	118.2 (6)
N2—N1—H1A	123 (6)	C9—C10—C11	121.0 (6)
C8—N2—N1	113.6 (6)	С9—С10—Н10	119.5
C12—N3—C15	121.4 (7)	C11-C10-H10	119.5
C12—N3—C16	120.7 (7)	C12—C11—C10	121.2 (7)
C15—N3—C16	117.3 (7)	C12—C11—H11	119.4
C2—C1—C6	121.3 (6)	C10-C11-H11	119.4
C2—C1—C7	121.8 (6)	C11—C12—N3	120.6 (7)
C6—C1—C7	116.9 (5)	C11—C12—C13	118.6 (7)
C1—C2—C3	117.8 (6)	N3—C12—C13	120.7 (6)
C1—C2—H2A	121.1	C14—C13—C12	119.6 (7)
С3—С2—Н2А	121.1	C14—C13—H13	120.2
C4—C3—O2	118.6 (6)	C12-C13-H13	120.2
C4—C3—C2	121.2 (6)	C13—C14—C9	121.7 (7)
O2—C3—C2	120.2 (6)	C13—C14—H14	119.2
C3—C4—C5	119.9 (6)	C9—C14—H14	119.2
C3—C4—H4	120.0	N3—C15—H15A	109.5
С5—С4—Н4	120.0	N3—C15—H15B	109.5
C4—C5—O1	117.8 (6)	H15A—C15—H15B	109.5
C4—C5—C6	120.7 (6)	N3—C15—H15C	109.5
O1—C5—C6	121.5 (6)	H15A—C15—H15C	109.5
C1—C6—C5	118.9 (6)	H15B—C15—H15C	109.5
С1—С6—Н6	120.5	N3—C16—H16A	109.5
С5—С6—Н6	120.5	N3—C16—H16B	109.5
O3—C7—N1	121.4 (6)	H16A—C16—H16B	109.5
O3—C7—C1	120.5 (6)	N3—C16—H16C	109.5
N1—C7—C1	118.0 (5)	H16A—C16—H16C	109.5
N2—C8—C9	121.4 (6)	H16B—C16—H16C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
O4—H4A···O3 ⁱ	0.850 (11)	2.16 (6)	2.895 (8)	144 (9)

supplementary materials

N1—H1A···O4 ⁱⁱ	0.902 (11)	2.14 (3)	2.999 (7)	159 (8)
O4—H4B···N2	0.848 (11)	2.46 (4)	3.175 (7)	143 (6)
O4—H4B…O3	0.848 (11)	2.24 (5)	2.936 (8)	139 (7)
O2—H2···O3 ⁱⁱⁱ	0.82	1.99	2.694 (6)	144
01—H1···O2 ^{iv}	0.82	2.06	2.766 (7)	145

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) *x*-1/2, -*y*, *z*; (iii) *x*-1/2, -*y*-1, *z*; (iv) *x*+1/2, -*y*-2, *z*.

Fig. 1

Fig. 2

